Hominy Swamp Stream Restoration 2004 Annual Monitoring Report

Delivered to: NCDENR/Ecosystem Enhancement Program

1619 Mail Service Center Raleigh, NC 27699-1619

Prepared by: Biological & Agricultural Engineering

Water Resources Research Institute

North Carolina State University

Campus Box 7625 Raleigh, NC 27695

February, 2005

NC STATE UNIVERSITY

2004 Hominy Swamp Monitoring Abstract

Hominy Swamp Creek was restored through the North Carolina Wetlands Restoration Program (NCWRP). The objectives of the project are to:

- 1.) Establish an stable dimension, pattern and profile on 2230 feet of Hominy Swamp Creek
- 2.) Improve habitat within Hominy Swamp Creek
- 3.) Establish an riparian buffer along Hominy Swamp Creek
- 4.) Incorporate this project into a watershed wide management plan

This is the 3rd year of the 5-year monitoring plan for Hominy Swamp Creek.

Table 1A. Background Information

Project Name	Hominy Swamp Creek
Designer's Name	KCI Associates of North Carolina, P.A. Landmark Center II, Suite 200 4601 Six Forks Road Raleigh, NC 27609
Contractor's Name	Unknown
Project County	Wilson County, North Carolina
Directions to Project Site	From Interstate I-264 take business 264 through the City of Wilson. Business 264 is also Raleigh Road continue on raleigh road until you reach Ripley Road. Head North on Ripley Road the site is on the right side (east) as soon as you turn of Raleigh Road.
Drainage Area	5.4 sq. mi.
USGS Hydro Unit	3020203020040
NCDWQ Subbasin	03-04-07 Neuse River Basin
Project Length	2,230 Linear feet
Restoration Approach	2,230 ft of priority 1 Natural Channel Design (dimension, pattern, and profile) with urban constraints
Date of Completion	September, 2001
Monitoring Dates	May, 2002; November, 2003; May, 2004

Results and Discussion

Overall, while the majority of the stream is functioning well and holding grade, the stream has areas of concern and areas of immediate need. Table 2 shows a summary of monitoring measurement results. Overall the project is performing well. Channel dimension and pattern are similar to as-built conditions with the exceptions of some limited areas of bank slumping. The channel profile is void of defined bed features and is dominated by runs and pools. Vegetation is not succeeding to levels required for mitigation credit. Placed structures are holding grade and functioning well.

Table 2. Summary of Channel Conditions

DIMENSION	Н	ominy Swar	np	Н	Hominy Swamp			ominy Swar	np	Hominy Swamp			
	Cı	oss-section	#1	Cr	oss-section	#2	Cr	oss-section	#3	Cr	oss-section	#4	
		Riffle		Riffle			Pool			Pool			
	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	
Bankfull Cross-sectional Area	62.3	87.2	52.7	53.1	53.9	59.8	76.3	64.9	54.3	88.3	107.5	113.8	
Bankfull Width	25.0	24.6	16.8	21.6	18.3	19.0	31.8	33.1	27.7	23.5	26.8	24.9	
Bankfull Mean Depth	2.5	3.5	3.1	2.5	3.0	3.2	2.4	2.0	2.0	3.8	4.0	4.6	
Bankfull Max Depth	3.6 6.8 4.9			3.8	4.2	4.8	6.0	5.5	4.9	6.0	6.8	7.2	

PATTERN	Н	ominy Swar	np	Hominy Swamp	Н	ominy Swan	np	Hominy Swamp			
		Design		As-built 2001		2003		2004			
	Minimum	Maximum	Median	Minimum Maximum Median	Minimum	Maximum	Median	Minimum	Maximum	Median	
Meander Wave Length	182	255	N/A	Not Reported	115	227	155	115	227	155	
Radius of Curvature	47	63	N/A	Not Reported	33	76	56	33	76	56	
Beltwidth	N/A	N/A	85	Not Reported	32	69	46	32	69	46	

PROFILE	Н	ominy Swar	np	Hominy Swam	Н	ominy Swan	np	Hominy Swamp			
		Design		As-built 2001			2003		2004		
				Minimum Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median
Riffle Length	Not Reported			Not Reported	15	53	23	16	41	28	
Riffle Slope	N/A	N/A	0.15%	Not Reported		0.02%	0.60%	0.19%	0.25%	0.73%	0.50%
Pool Length	35	49	N/A	Not Reported		30	73	52	32	115	53
Pool to Pool Spacing	91 128 N/A			Not Reported		64	178	107	45	165	108

SUBSTRATE	Но	ominy Swan	np	Но	miny Swar	np	Н	ominy Swan	np	Hominy Swamp			
	Cre	oss-section	#1	Cre	oss-section	#2	Cr	oss-section	#3	Cr	oss-section a	#4	
		Riffle			Riffle			Pool		Pool			
	2002	2002 2003 2004		2002	2003	2004	2002	2003	2004	2002	2003	2004	
d50	0.54	0.29	0.58	0.20	0.17	0.26	0.22	0.26	1.88	0.17	0.22	0.27	
d84	2.00 0.58 1.88			0.63	0.49	0.67	13.65	5.88	17.73	3.74	0.62	0.75	

VEGETATION 2003 Monitoring	Quad 1 -	Hominy	Quad 2 -	Hominy	Quad 3 -	Hominy	Quad 4 - Hominy		
VEGETATION 2003 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*	
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120	
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a	
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a	

VEGETATION 2004 Monitoring	Quad 1 -	Hominy	Quad 2 -	Hominy	Quad 3 -	Hominy	Quad 4 - Hominy		
VEGETATION 2004 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*	
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120	
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a	
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a	

^{*} Planted value represents number of stems observed alive that were planted.

The following areas of concern should be monitored closely and considered for repair as suggested:

Hominy Swamp Creek

- Easement Limits
 - NCWRP should work with landowners to ensure easement limits are maintained by the park maintenance workers
- Areas with bank slumping
 - o Bank slumping has been noted at two locations on the stream on the right bank at STA. 6+50 for approximately 15 ft and on the left bank at STA. 11+10 for approximately 25 ft
 - Overland flow may need to be routed away from areas that show signs of bank erosion and slumping
- Areas lacking stream feature
 - O The entire length of restored stream has on four existing riffle features, but as it can be observed from the as-build longitudinal profile there were not may riffles that showed up in the as-build survey
 - o The restored stream lacks defined bedform
- Vegetation
 - o Planting select trees in critical areas where there is localized erosion.
 - o The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
 - It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
 - Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet.
 - o Mowing should be halted within the specified limits of the riparian buffer.

Photos

The following are photographs of typical sections and areas of concern throughout the project.

Typical Riffle

Typical Vegetation Plot.

Issue Photo 2. Heavy recreational use within the buffer.

Issue Photo 4 station 11+10. Overland flow resulting in bank erosion.

Issue Photo 1. Mowing within easement limits to top of channel bank.

Issue Photo 3. Urban debris blockage.

Issue Photo 5 station 6+50. Bank slump

Table of Contents

2004 Lyle Creek Monitoring Abstract	1
Table of Contents	v
Tables and Figures	
1.0 BACKGROUND INFORMATION	1
1.1 Goals and Objective	1
1.2 Project Location	1
1.4 Project Description	2
2.0 YEAR 2004 RESULTS AND DISCUSSION	7
2.1 Vegetation	
2.1.1 Results and Discussion	
2.2 Morphology	8
2.2.1 Results and Discussion	
2.3 Areas of Concern	12
2.4 Photo Log	
Tables and Figures	
Figure 1. Project Location	3
Figure 2. Watershed Ortho-photo	4
Figure 3. Plan view of As-built conditions	
Figure 4. Plan view of 2004 overlain on As-built.	
Table 1. Summary of Results	
Figure 5. Hominy Swamp Profile	

1.0 BACKGROUND INFORMATION

The background information for this report is referenced from previous monitoring reports conducted by KCI, Inc. The following was excerpted from 2002 KCI monitoring report:

Project planning was initiated in 1999 for the implementation of an urban stream restoration project in Wilson, North Carolina (Figure 1).

Phase I of the project consisted of the detailed analysis of the 5.4 square mile portion of the Hominy Swamp Creek watershed (located within USGS 14-digit Hydrologic Unit Code 03020203020040, NCDWQ Subbasin 03-04-07 of the Neuse River Basin) that contributes drainage to the project site. The watershed analysis, including the assessment of over 7 miles of stream channel, was conducted for the purpose of developing a clear understanding of existing system characteristics. The resulting Watershed Management Plan identified opportunities to improve water quality and overall system functions including targeted strategies such as wetland/riparian buffer preservation, stormwater BMP development/retrofitting, stream restoration, and community education.

Following coordination with local leaders and citizens groups, Phase II of the project was initiated and focused on the restoration of approximately 2,000 linear feet of degraded stream within the Wilson Recreation Park. Detailed environmental assessments and engineering studies were conducted and design plans and documents were prepared to facilitate the stream and riparian buffer restoration. Implementation of the project was completed in September 2001.

The restoration of this portion of Hominy Swamp Creek, located within the Wilson City Recreational Park, was conducted to correct identified system deficiencies including severe bank erosion, channel widening, and the loss of aquatic habitat resulting from stream channelization, the loss of riparian vegetation, and watershed development. The goal of the project was to develop a stable stream channel with reduced bank erosion, efficient sediment transport, enhanced warm water fisheries, and improved overall stream habitat and site aesthetics. Implementation of the project was completed in September 2001.

1.1 Goals and Objective

The goals and objectives of this project are as follows:

- 1.) Restore 2,230-linear feet of Hominy Swamp Creek through a priority 1 natural channel design approach.
- 2.) Establish a riparian zone surrounding restored section of Hominy Swamp Creek.
- 3.) Improve the habitat within the channel and the riparian zone.
- 4.) Incorporate this project into a watershed wide management plan.

1.2 Project Location

This project is located within the city limits of Wilson, North Carolina. From Raleigh, follow Interstate I-264 east take business 264 through the City of Wilson. Business 264 is also Raleigh Road continue on Raleigh road until you reach Ripley Road. Head North on Ripley Road the site is on the right side (east) as soon as you turn of Raleigh Road.

1.4 Project Description

A previously straight channel through the Wilson City Recreational Park, Hominy Swamp Creek was restored using channel dimension, pattern, and profile modifications and the establishment of riparian zone adjacent to the creek. Channel profile is maintained through the use of log and rock cross vanes. Channel pattern is maintained through the use of log single vanes and vegetation along the channel banks. Due to multiple urban constraints, pattern modifications were limited throughout the project.

Figure 3. Plan view of As-built conditions

(To be attached) showing all structures with station numbers showing vegetation permanent plots showing permanent cross-sections and benchmarks showing vegetation plots showing monitoring gauges

Figure 4. Plan view of 2003 overlain on As-built (To be attached)

2.0 YEAR 2004 RESULTS AND DISCUSSION

Year 2004 monitoring results are shown for Hominy Swamp Creek Monitoring.

2.1 Vegetation

Using the <u>Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland Restoration Projects</u>, 4 vegetation monitoring plots were randomly located within the riparian buffer of the Hominy Swamp project. No reference area was studied; therefore no comparisons could be made to reference conditions.

2.1.1 Results and Discussion

Vegetation within the riparian buffer of this unnamed tributary is overall considered mixed in success. The upper portion of the restoration site was well vegetated with live stakes and naturally regenerating native species. Several overbank events had recently occurred and herbaceous vegetation preserved the integrity of the stream bank in most areas. Native herbaceous plants were growing well. Shrubs, especially those from live stakes, were diverse and healthy. Planted bare root trees averaged 220 stems per acre for the upper two plots. Some of the larger planted trees had apparently been j-rooted during initial planting. Several of these trees had fallen over and inspection of the roots revealed that they had been poorly installed. This appeared to have led to root instability and susceptibility to wind throw. Several dead planted trees were noted within the upper portion of the project. Vegetation in the lower portion of the project was healthy, although numbers of planted bare root trees were lower; average was 120 stems per acre. It appeared that much of the buffer in this region had been moved and the tree mortality was high as a result. Again, increased mortality was noted for planted specimens. Shrubs from stakes again were thriving along the streambanks. Herbaceous plants were less diverse but still dense. Extrapolation from the four plots resulted in an overall average of approximately 170 planted trees per acre for this restoration site. If natural regeneration is included with planted trees, the number is increased to an average of approximately 2530 trees per acre. Both of these estimates are based on a diverse mix of species as well. Natural regeneration continues to play an important role in the restoration of this site.

Invasive plant species on the site included Lonicera japonica (Japanese honeysuckle), Wisteria sinensis (Chinese wisteria), Ligustrum sinense (Chinese privet) and Microstegium vimineum. Chinese wisteria is choking much of the adjacent forest in the upper portion of the project. Several vines were noted within the riparian corridor. Because this plant spreads extensively by rhizomes, it is only a matter of time before it infests the riparian area. Chinese privet was sporadically spread throughout the area, no where abundant. Japanese honeysuckle and microstegium were prevalent throughout.

Recommendations include planting more trees to satisfy mitigation requirements. Mowing should be halted within the specified limits of the riparian buffer. It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends. Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet.

2.2 Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2004 monitoring.

2.2.1 Results and Discussion

Hominy Swamp Creek is sand bed channel and therefore the dune and anti-dune characteristics of sand-bed sediment transport should be considered. The channel profile along Hominy Swamp Creek has not shown any significant changes in between monitoring periods. The channel profile along Hominy Swamp Creek has also not shown any significant changes in between the as-build profile and this year's monitoring. The stream profile of by the monitoring and as-build show very few riffle features in the The mitigation report mentions that the design was to build a riffle/pool sequence plan form, but this intent was not displayed on the as-build survey. The number of defined riffles in the bedform has decreased from 6 in the 2001 as-build, to 4 in 2003 and there are now only two defined riffles. The two defined riffles are located at station 5+65 and station 11+50 both of these riffles are migratory sediment deposition in a dune antidune system. The location of riffles has changed significantly from year to year of monitoring this stream restoration. The riffle length average riffle length has also decreased to 28 ft in 2004 which is about the width of the bankfull channel. The average riffle slope has not change significantly and many of the riffles have been transformed into runs which are more defined in low gradient systems.

KCI cross section results were recalculated using NCSU techniques for consistency purposes. Data was examined but field identified features were retained. The same datum was used for bankfull for each year's monitoring results. Cross-sections 1 was not field located in 2003; the cross-section has been re-established and will be monitored in the re-established location and the original location if it can be field located during future monitoring periods. Cross-section 1 is a riffle and has shown an area decrease since construction. Over the 2002-2003 monitoring period channel riffle cross-section 2 along Hominy Swamp Creek did not show any significant change in cross-sectional area. Over the 2003-2004 monitoring period the area of cross-section 2 increased by 13% to 60 square feet. Pool cross-section 3 has significantly filled in with sediment the cross-sectional area has decreased 25% from 76 to 54 square feet. Cross section 3 is 120 ft upstream from a channel constriction due to a pedestrian bridge that may produce backwater through cross-section 3. The area of pool cross-section 4 has enlarged 30% from 89 to 114 square feet since construction, in the past year there has not been a significant change in the cross section area of pool cross-section 4.

Channel substrate in the riffle sections continue have very little change. The D50 has not significantly changed over the four cross sections. In riffle 1, the D50 decreased from 0.54mm to 0.29mm and back to 0.58mm, and in riffle 2 the D50 decreased from 0.20mm to 0.17mm and back to 0.26mm. The riffles are maintaining a medium sand substrate. The pool cross-section D50 has increased slightly, from 0.17mm to 0.27mm, but not a significantly. A possible cause of decrease in particle size is measurement technique. It is not know if previous surveyors used similar sampling technique. Future monitoring

should better evaluate channel substrate. In summary the substrate in the same as it was after construction which is medium sand.

Channel pattern appears to have been maintained since construction. A few of the outside meander bends are experiencing slight migration through bank slumping but no excessive migration is evident and no shoot cut-offs are apparent. The pattern aligns closely with the as-build pattern (Figure 4). Channel banks throughout Hominy Swamp Creek remains fairly stable, with the exception of two spot areas of bank slumping. Slumping is likely the result of the lack of deep rooting vegetation, steep stream banks, high stream velocities near the channel toe, and possible overland flow into the channel.

While lacking bedform this project has fairly stable banks and is able to transport the sediment supplied through the reach. There were no areas of concern noted due to high near bank stress and the bank erosion hazard index was used to rank the stream banks as having a moderate erodibility rating. Bed scour is primarily limited to meander beds and below structures where energy show be dissipated in a stream. Vegetation is growing well and there is a lot of volunteer growth on this project but does not meet the vegetation requirements of the Ecosystem Enhancement Program yet. This reach of Hominy Swamp is a run dominated sand bed stream but the system seems to be relatively stable with a constantly sifting bedform.

Table 1. Summary of Channel Conditions

DIMENSION	Н	ominy Swar	np	Н	ominy Swar	np	Н	ominy Swar	np	Hominy Swamp			
	Cı	ross-section	#1	Cı	oss-section	#2	Cı	oss-section	#3	Cr	oss-section	#4	
		Riffle			Riffle			Pool		Pool			
	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	
Bankfull Cross-sectional Area	62.3	87.2	52.7	53.1	53.9	59.8	76.3	64.9	54.3	88.3	107.5	113.8	
Bankfull Width	25.0	24.6	16.8	21.6	18.3	19.0	31.8	33.1	27.7	23.5	26.8	24.9	
Bankfull Mean Depth	2.5	3.5	3.1	2.5	3.0	3.2	2.4	2.0	2.0	3.8	4.0	4.6	
Bankfull Max Depth	3.6 6.8 4.9			3.8	4.2	4.8	6.0	5.5	4.9	6.0	6.8	7.2	

PATTERN	H	ominy Swan	np	Hominy Swamp	Hominy Swamp			np	Hominy Swamp			
		Design		As-built 2001			2003		2004			
	Minimum	Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median	
Meander Wave Length	182	255	N/A	Not Reported		115	227	155	115	227	155	
Radius of Curvature	47	63	N/A	Not Reported		33	76	56	33	76	56	
Beltwidth	N/A	N/A	85	Not Reported	32	69	46	32	69	46		

PROFILE	Н	ominy Swar	np	Hominy Swan	Н	ominy Swan	np	Hominy Swamp			
		Design		As-built 2001		2003		2004			
	Minimum	Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median	Minimum	Maximum	Median
Riffle Lengt	Not Reported			Not Reported	15	53	23	16	41	28	
Riffle Slop	e N/A	N/A	0.15%	Not Reported		0.02%	0.60%	0.19%	0.25%	0.73%	0.50%
Pool Lengt	n 35	49	N/A	Not Reported	1	30	73	52	32	115	53
Pool to Pool Spacin	g 91	128	N/A	Not Reported	l	64	178	107	45	165	108

SUBSTRATE	Но	Hominy Swamp			ominy Swar	np	Н	ominy Swan	np	Hominy Swamp			
	Cr	oss-section	#1	Cr	oss-section	#2	Cr	oss-section	#3	Cr	oss-section a	#4	
	Riffle			Riffle				Pool		Pool			
	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	
d50	0.54	0.29	0.58	0.20	0.17	0.26	0.22	0.26	1.88	0.17	0.22	0.27	
d84	2.00 0.58 1.88		0.63	0.49	0.67	13.65	5.88	17.73	3.74	0.62	0.75		

VEGETATION 2003 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a

VEGETATION 2004 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a

^{*} Planted value represents number of stems observed alive that were planted.

HOMINY SWAMP CREEK LONG PROFILE 2004

2.3 Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

Easement Limits

o NCWRP should work with landowners to ensure easement limits are maintained by the park maintenance workers

Areas with bank slumping

- o Bank slumping has been noted at two locations on the stream on the right bank at STA. 6+50 for approximately 15 ft and on the left bank at STA. 1+10 for approximately 25 ft
- Overland flow may need to be routed away from areas that show signs of bank erosion and slumping

Areas lacking stream feature

O The entire length of restored stream has on four existing riffle features, but as it can be observed from the as-build longitudinal profile there were not may riffles that showed up in the as-build survey

Vegetation

- o Planting select trees in critical areas where there is localized erosion.
- O The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
- O It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
- O Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet.
- o Mowing should be halted within the specified limits of the riparian buffer.

2.4 Photo Log

Hominy Swamp Creek Photo Log

Location #1 Downstream

Location #2 Upstream

Location #2 Downstream

Location #3 Upstream

Location #3 Downstream

Location #4 Upstream

Location #4 Downstream

Location #5 Upstream

Location #5 Downstream

Location #6 Upstream

Location #6 Downstream

Location #7 Upstream

Location #7 Downstream

Location #8 Upstream

Location #8 Downstream

Location #9 Upstream

Location #9 Downstream

Location #10 Upstream

Appendices

- A. Methods
 - 1. Vegetation
 - 2. Morphology
- B. Vegetation data
 - 1. Listed by plot
 - 2. Species, number and age
 - 3. Analysis of planted vs. natural recruitment
- C. Morphology Data
 - 1. Cross-section data and plotted (DONE)
 - 2. Longitudinal data and plotted (DONE)
 - 3. Pebble count data and plotted (DONE)
 - 4. Pattern (DONE)

Project Name Hominy Swamp Creek
Cross Section #1

Feature Riffle
Date 5/24/04
Crew Bidelspach, Clinton

Cross-Section #1 location was moved in 2003

	2004 I Survev			2002 2002 Survey			2003 2003 Survey		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	
-2.22	106.52		0	106.4		0	106.52		
0	106.4		10	106.29		12.4	105.79		
15.04	106.06		15	106.09		18.9	105.14		
29.3	103.95		20	105.42		22.55	104.65		
31.92	103.14		23	104.43	BKF	25.31	104.05	BKF	
34.12	98.68		28	103.23		27.88	102.58		
38.15	99.23		30	102.42		30.03	99.64		
39.31	99.76		32	101.21		31	98.91		
43.25	99.73		33.2	100.8		32.24	97.99		
46.13	101.85		33.5	99.94		33.47	96.9		
47.72	103.82		36	99.93		35.45	96.38		
49.53	104.16		39	99.85		36.15	96.41		
51.77	103.56		42.8	99.68		37.39	96.65		
55.23	104.18	BKF	45	99.52		39.08	97.23		
77.16	104.99		46.3	99.66		42.9	98.33		
94.4	105.27		48	99.99		44.3	99.88		
94.94	105.01		48.3	100.49		47.0	102.65		
			49.3	100.84		47.1	102.78		
			49.5	101.32		59.1	103.7		
			51.7	102.73		79.2	105.02		
			53	103.16		89.3	105.01		
			60	103.57	BKF	89.7	105.01		
			70	104.38		89.8	105.04	BKF	
			90	105.06		97.4	105.07		

Photo of Cross-Section #1 - Looking Downstream

	2002	2003	2004
Area	62.3	87.2	52.7
Width	25.0	24.6	16.8
Mean Depth	2.5	3.5	3.1
Max Depth	3.6	6.8	4.9

Cross Section Feature Riffle

Date 5/24/04 Bidelspach, Clinton Crew

			As-Built			20	004		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	0	0	0.0%	0.0%
	very fine sand	0.062	0	0.0%	6.0%	8	1	9.0%	9.0%
	fine sand	0.125	7	14.0%	20.0%	4	2	6.0%	15.0%
Sand	medium sand	0.25	11	22.0%	42.0%	6	4	10.0%	25.0%
	course sand	0.50	9	18.0%	60.0%	30	15	45.0%	70.0%
	very course sand	1.0	10	20.0%	80.0%	8	4	12.0%	82.0%
	very fine gravel	2.0	6	12.0%	92.0%	2	6	8.0%	90.0%
G	fine gravel	4.0	3	6.0%	98.0%	0	2	2.0%	92.0%
_	fine gravel	5.7	1	2.0%	100.0%	2	3	5.0%	97.0%
r	medium gravel	8.0	0	0.0%	100.0%	0	1	1.0%	98.0%
a	medium gravel	11.3	0	0.0%	100.0%	0	1	1.0%	99.0%
V	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	99.0%
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	99.0%
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	99.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	99.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	99.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	99.0%
Copple	large cobble	128	0	0.0%	100.0%	0	1	1.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		60	40	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.16	0.32	0.54	2.00	3.93
2004	0.21	0.46	0.58	1.88	6.05
2003	0.08	0.19	0.29	0.58	0.70

Cross Section #2
Feature Riffle
Date 5/24/04
Crew Bidelspach, Clinton

0.0 10.7	O04 Survey Elevation 104.3	Notes	Station		2002 2002 Survey			2003 2003 Survey		
			Station	Elevation		Station	Elevation			
10.7			0.0	104.3		0.0	104.3			
	104.3		10.0	104.2		9.4	104.3			
22.8	103.7		20.0	103.9		21.2	103.9			
28.3	102.6	BKF	23.0	103.6		27.5	102.5	BKF		
30.1	103.0		28.0	102.2	BKF	32.5	102.9			
32.6	102.8		33.0	101.9		34.9	101.1			
34.2	100.2		34.0	101.3		36.7	98.8			
36.8	98.2		36.0	100.1		39.2	98.0			
41.2	97.4		37.0	99.1		43.9	98.2			
43.2	97.5		38.5	98.4		48.3	98.4			
45.9	98.4		41.0	98.7		48.6	100.7			
47.5	99.2		43.5	99.0		52.5	102.1			
48.1	101.0		45.9	99.1		60.0	103.0			
51.5	101.5		48.6	99.5		68.9	103.9			
57.9	102.8		50.6	100.1		82.0	104.6			
68.4	103.9		53.0	101.5		83.5	104.5			
81.8	104.4		55.0	102.4	BKF					
81.8	104.5		61.0	103.0						
			70.0	104.0						
			82.0	104.5						

Photo of Cross-Section #2 - Looking Upstream

	2002	2003	2004
Area	53.1	53.9	59.8
Width	21.6	18.3	19.0
Mean Depth	2.5	3.0	3.2
Max Depth	3.8	4.2	4.8

Cross Section Feature Riffle

Date 5/24/04 Crew Bidelspach, Clinton

			As-Built			20	004		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	1	0	1.0%	1.0%
	very fine sand	0.062	9	18.0%	24.0%	15	5	20.2%	21.2%
	fine sand	0.125	12	24.0%	48.0%	15	4	19.2%	40.4%
Sand	medium sand	0.25	12	24.0%	72.0%	17	8	25.3%	65.7%
	course sand	0.50	9	18.0%	90.0%	14	9	23.2%	88.9%
	very course sand	1.0	2	4.0%	94.0%	2	5	7.1%	96.0%
	very fine gravel	2.0	2	4.0%	98.0%	1	0	1.0%	97.0%
G	fine gravel	4.0	1	2.0%	100.0%	0	1	1.0%	98.0%
	fine gravel	5.7	0	0.0%	100.0%	0	1	1.0%	99.0%
r	medium gravel	8.0	0	0.0%	100.0%	0	1	1.0%	100.0%
a	medium gravel	11.3	0	0.0%	100.0%	0	0	0.0%	100.0%
V	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	100.0%
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	/ %of whole count		50	100.0%		65	34	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.08	0.14	0.20	0.63	1.88
2004	0.09	0.16	0.26	0.67	1.40
2003	0.07	0.11	0.17	0.49	0.67

Cross Section #3
Feature Pool
Date 5/24/04
Crew Bidelspach, Clinton

2002 2002 Survey			2002 2002 Survey			2003 2003 Survey		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0.0	105.5		0.0	105.5		26.0	104.3	
8.6	104.8		10.0	104.7		32.7	103.5	
25.1	104.6		29.0	104.3		36.6	102.4	
31.4	103.9		34.0	103.1		41.7	98.9	
37.3	102.5		38.2	101.3		42.6	97.8	
38.2	101.6		39.7	100.3		44.9	97.0	
39.4	99.9		40.0	99.3		47.3	97.4	
45.2	97.6		40.6	99.0		49.1	98.1	
51.8	101.0		43.0	97.9		51.3	98.8	
56.5	101.8		45.7	96.6		52.4	99.9	
65.0	102.5	BKF	47.6	96.7		53.8	100.8	
72.8	103.1		49.0	97.6		57.4	101.4	
89.9	103.3		51.3	99.0		60.5	101.8	
91.0	103.6		52.0	99.0		69.7	102.4	
			52.5	100.1		81.6	102.6	BKF
			56.0	101.1		92.4	103.2	
			59.0	101.6		93.8	103.3	
			70.0	102.5	BKF	94.2	103.2	
			80.0	103.0				
			91.0	103.6				

Photo of Cross-Section #3 - Looking Downstream

	2002	2003	2004
Area	76.3	64.9	54.3
Width	31.8	33.1	27.7
Mean Depth	2.4	2.0	2.0
Max Depth	6.0	5.5	4.9

Cross Section #3 Feature Pool

Date 5/24/04 Crew Bidelspach, Clinton

As-Built 2004									
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	2	4.0%	4.0%	3	0	2.8%	2.8%
	very fine sand	0.062	12	24.0%	28.0%	5	2	6.4%	9.2%
	fine sand	0.125	10	20.0%	48.0%	3	3	5.5%	14.7%
Sand	medium sand	0.25	6	12.0%	60.0%	7	6	11.9%	26.6%
	course sand	0.50	1	2.0%	62.0%	4	2	5.5%	32.1%
	very course sand	1.0	1	2.0%	64.0%	19	0	17.4%	49.5%
	very fine gravel	2.0	1	2.0%	66.0%	1	1	1.8%	51.4%
G	fine gravel	4.0	1	2.0%	68.0%	1	0	0.9%	52.3%
_	fine gravel	5.7	3	6.0%	74.0%	3	0	2.8%	55.0%
r	medium gravel	8.0	2	4.0%	78.0%	6	0	5.5%	60.6%
a	medium gravel	11.3	3	6.0%	84.0%	7	7	12.8%	73.4%
v	course gravel	16.0	3	6.0%	90.0%	8	8	14.7%	88.1%
e	course gravel	22.6	3	6.0%	96.0%	3	9	11.0%	99.1%
1	very course gravel	32	0	0.0%	96.0%	0	1	0.9%	100.0%
	very course gravel	45	0	0.0%	96.0%	0	0	0.0%	100.0%
	small cobble	64	1	2.0%	98.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	98.0%	0	0	0.0%	100.0%
Copple	large cobble	128	1	2.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		50	100.0%		70	39	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.08	0.13	0.22	13.65	25.97
2004	0.21	0.87	1.88	17.73	24.33
2003	0.07	0.11	0.26	5.88	7.08

Project Name Hominy Swamp Creek Cross Section #4

 Cross Section
 #4

 Feature
 Pool

 Date
 5/24/04

 Crew
 Bidelspach, Clinton

2004 2004 Survey			:	2002 2002 Surve	y		2003 2003 Survey			
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes		
0.0	104.7		0.0	104.7		0.0	104.7			
17.3	104.3		10.0	104.6		0.4	104.8			
28.6	103.2		15.0	104.4		14.3	104.4			
35.1	101.7		20.0	104.0		28.7	103.0			
38.8	99.4		25.0	103.5		33.4	102.2			
39.2	98.2		30.0	102.8		34.5	100.4			
39.7	97.4		32.0	102.5	BKF	36.9	99.7			
40.8	96.7		36.0	100.8		37.4	97.7			
43.8	95.5		38.2	99.2		40.6	96.7			
48.3	95.3		39.2	98.2		44.5	95.4			
51.0	95.8		39.8	97.8		46.5	95.6			
54.0	98.2		42.0	96.9		49.8	96.0			
60.0	102.5	BKF	44.6	96.2		51.7	96.5			
60.6	102.9		47.0	96.4		51.9	96.5			
66.8	104.7		49.0	96.8		53.8	98.7			
77.8	104.9		50.6	97.3		55.5	101.4			
85.1	104.9		51.1	98.5		57.7	102.5	BKF		
			52.9	98.8		61.5	104.0			
			55.5	100.7		65.6	104.7			
			56.5	101.5		85.1	104.9			
			58.0	102.4	BKF					
			61.0	104.1						
			65.0	104.7						
			74.0	105.0						
			85.0	104.9						

Photo of Cross-Section #4 - Looking Upstream

	2002	2003	2004
Area	88.3	107.5	113.8
Width	23.5	26.8	24.9
Mean Depth	3.8	4.0	4.6
Max Depth	6.0	6.8	7.2

Cross Section #4
Feature Pool

Date 5/24/04 Crew Bidelspach, Clinton

			AS-Duit	1	2004					
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	10	2	11.9%	11.9%	
	very fine sand	0.062	9	18.0%	24.0%	6	5	10.9%	22.8%	
	fine sand	0.125	15	30.0%	54.0%	9	8	16.8%	39.6%	
Sand	medium sand	0.25	7	14.0%	68.0%	15	10	24.8%	64.4%	
	course sand	0.50	5	10.0%	78.0%	10	10	19.8%	84.2%	
	very course sand	1.0	0	0.0%	78.0%	10	3	12.9%	97.0%	
	very fine gravel	2.0	1	2.0%	80.0%	0	0	0.0%	97.0%	
G	fine gravel	4.0	5	10.0%	90.0%	0	1	1.0%	98.0%	
	fine gravel	5.7	0	0.0%	90.0%	0	1	1.0%	99.0%	
r	medium gravel	8.0	5	10.0%	100.0%	0	1	1.0%	100.0%	
a	medium gravel	11.3	0	0.0%	100.0%	0	0	0.0%	100.0%	
v	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	100.0%	
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	100.0%	
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	
TOTAL	. / %of whole count		50	100.0%		60	41	100.0%		

	d16	d35	d50	d85	d95
As-Built	0.08	0.13	0.17	3.74	8.25
2004	0.07	0.16	0.27	0.75	1.38
2003	0.10	0.16	0.22	0.62	1.12

Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station			Elevation	Description
1171	1 23.34	4 100.36	s CV	1174	14.76	101.39	MA /	14	5	60.48	560.48	103.38	BKF
1169				1174				18	6	11.48	611.48	103.32	BKF
1167				1170				21	6	58.11	658.11	103.88	BKF
1165				1168				22	6	79.49	679.49	103.43	BKF
1165				1166				23	6	94.24	694.24	103.47	BKF
1163				1164				24	7	10.6	710.6	103.55	BKF
1161 1159				1162 1160		100.96 100.95		26 27	7 7	68.24 96.56	768.24 796.56	103.24 103.25	BKF BKF
1157				1158				28	8	42.44	842.44	103.23	BKF
1155				1156				29	8	84.09	884.09	102.95	BKF
1153	3 117.07	7 100.21	ΙT	1154	115.51	100.84	W	30	9	9.15	909.15	103.26	BKF
1151				1152				31	9	26.07	926.07	103.22	BKF
1149				1150				32	9	54.3	954.3	103.13	BKF
1147 1143				1148 1144				33 56	9 6	66.86 38.15	966.86 638.15	102.88 102.65	BKF BKF
1145				1146				57	6	56.75	656.75	102.82	BKF
1141				1142				58	6	67.12	667.12	103.86	BKF
1139	9 181.42			1140	181.68	100.81	W	61	6	83.76	683.76	103.97	BKF
1137				1138				64	7	12.11	712.11	103.04	BKF
1135				1136				67	7	27.84	727.84	103.03	BKF
1133 1131				1134 1132				148 149	12 12	61.6 29.48	1261.6 1229.48	102.3 102.78	BKF BKF
1129				1130				150	12	12.91	1212.91	103.3	BKF
1125				1128				152	11	46.39	1146.39	102.21	BKF
1092	2 248.36	98.25	5 T	1126	239.92	100.79	W	153	10	82.85	1082.85	103.2	BKF
1090				1093		100.54		154	10	71.39	1071.39	102.51	BKF
1088				1091				156	10	33.61	1033.61	102.03	BKF
1086 1084				1089 1087		100.59 100.55		157 158	10 9	15.65 93.29	1015.65 993.29	102.94 102.84	BKF BKF
1082				1085				162	9	17.79	917.79	102.44	BKF
1080				1083				163	8	91.61	891.61	102.56	BKF
1078	332.88	99.3	ВТ	1081	321.25	100.58	W	165	8	62.93	862.93	102.94	BKF
1076				1079				166	8	48.61	848.61	103.01	BKF
1072				1077		100.58		167	8	24.56	824.56	103.56	BKF
1070 1068				1075 1073		100.44 100.63		168 169	8 7	2.62 84.64	802.62 784.64	103.69 103.41	BKF BKF
1066				1073				170	7	60.94	760.94	102.54	BKF
1064				1069				171	7	46.15	746.15	103	BKF
1062				1067				172	7	22.94	722.94	103.04	BKF
1060				1065				177	12	80.57	1280.57	101.85	BKF
964				1063 1061				178 179	12 12	38.38 27.38	1238.38 1227.38	101.78	BKF BKF
1056 962				965				180	11	98.73	1198.73	101.8 101.82	BKF
1054				1057				181	11	81.09	1181.09	102.41	BKF
960				963				182	11	64.13	1164.13	102.84	BKF
1052				961				183	11	48.21	1148.21	102.16	BKF
958				1053				184	11	22.28	1122.28	102.16	BKF
1050 1048				959 1051		100.57 100.37		185 186	10 10	97.69 70.22	1097.69 1070.22	102.7 102.6	BKF BKF
954				1049				187	10	50.96	1050.96	103.29	BKF
1046				955		100.55		188	10	39.33	1039.33	103.35	BKF
956				1047				189	10	27.4	1027.4	102.82	BKF
1044				957				190	10	3.89	1003.89	102.76	BKF
952				1045 953				191	9	80.61	980.61	102.71	BKF BKF
1042 950				1043		100.6 100.54		192 199	14	64.45 0.79	964.45 1400.79	103.18 102.64	BKF
948				951				201	14	18.17	1418.17	102.76	BKF
944	4 601.17			949				209	15	28.54	1528.54	102.18	BKF
942				1027				210	15	56.77	1556.77	102.95	BKF
940				947				211	15	75.08	1575.08	103.03	BKF
938 936				945 943				213 214	16 16	12.82 37.77	1612.82 1637.77	102.99 102.91	BKF BKF
934				941				215	16	64.44	1664.44	102.01	BKF
932				939			W	216	16	91.66	1691.66	101.72	BKF
930				937				217	17	9.66	1709.66	102.26	BKF
928				935				218	17	34.15	1734.15	101.82	BKF
926 924				933 931				219 220	17 17	69.06 93.1	1769.06 1793.1	101.92 102.58	BKF BKF
922				929				279	13	16.81	1316.81	102.30	BKF
920				927				282	13	40.82	1340.82	102.94	BKF
918	3 755.47	7 98.73	3 T	925	708.46	100.43	W	285	13	64.28	1364.28	102.46	BKF
916				923				286	13	98.86	1398.86	101.98	BKF
914				921				289	14	0.91	1400.91	101.96	BKF
912 910				919 917				296 304	14 14	34.7 91.13	1434.7 1491.13	102.35 102.99	BKF BKF
908				917				314	0	18.96	18.96	102.99	BKF
906				913				315	Ö	47.08	47.08	102.62	BKF
904	4 837.41	1 98.53	3 T	911	807.61	100.5	W	316	0	84.22	84.22	102.05	BKF
902				909				317	1	1.22	101.22	102.53	BKF
900				907				320	1	55.8	155.8	102.72	BKF
694 696				905 903				323 326	1 0	81.24 32.71	181.24 32.71	102.05 103.28	BKF BKF
698				901				329	0	73.49	73.49	102.48	BKF

700	899.6	98.84 R	692	860.41	100.47 W	332	1	44.61	144.61	101.8	BKF
702	907.42	98.8 P	695	868.57	100.35 W	339	1	52.07	152.07	101.41	BKF
704	920.03	97.33 M	697	872.89	100.41 W	345	2	0.84	200.84	102.15	BKF
			699	889.52			2	23.69	223.69	102.13	BKF
706	936.95	98.79 R			100.35 W	358					
708	952.43	98.89 T	701	899.38	100.3 W	361	2	52.18	252.18	101.96	BKF
710	965.85	98.46 P	703	908.07	100.33 W	364	2	82.57	282.57	101.99	BKF
712	967.2	98.44 M	705	919.85	100.15 W	369	2	24.01	224.01	101.9	BKF
714	974.83	98.99 T	707	936.74	100.08 W	372	2	39.01	239.01	102.38	BKF
716	988.78	99.05 P	709	953.85	100.01 W	375	2	52.14	252.14	102.4	BKF
718	993.94	97.92 M	711	965.81	100.06 W	378	2	76.86	276.86	102.53	BKF
720	1004.95	97.51 T	713	967.19	100.06 W	381	3	2.95	302.95	102.47	BKF
726	1025.17	97.77 LV	715	973.43	100.04 W	384	3	23.33	323.33	101.73	BKF
728	1033.15	98.19 U	717	988.3	100.07 W	389	3	34.32	334.32	101.57	BKF
730	1048.52	98.33 T	719	994.35	100.01 W	392	3	64.02	364.02	102.42	BKF
732	1053.06	98.27 P	721	1003.91	100.11 W	393	3	75.1	375.1	102.24	BKF
734	1053.86	97.56 P	723	1013.89	100.08 W	396	3	89.11	389.11	102.06	BKF
736	1062.71	97.97 G	725	1021.1	100.02 W	405	2	83.2	283.2	101.67	BKF
742	1070.58	97.84 T	727	1025.44	100.01 W	416	3	5.56	305.56	101.36	BKF
744	1075.32	97.49 PP	729	1033.43	99.97 W	417	3	17.93	317.93	101.95	BKF
746	1084.58	98.3 T	731	1048.02	100.01 W	418	3	36.16	336.16	101.69	BKF
748	1092.36	98.63 T	733	1052.75	100.01 W	419	3	59.05	359.05	101.55	BKF
750	1098.68	98.53 R	735	1052.75	99.99 W	420	3	82.52	382.52	101.33	BKF
752	1106.45	98.74 P	737	1061.97	100.04 W	421	4	6.3	406.3	101.6	BKF
754	1109.4	98.51 P	740	1067.5	99.97 W	422	4	50.68	450.68	101.71	BKF
756	1117.26	98.67 T	741	1069.18	100.04 W	423	4	65.89	465.89	101.47	BKF
758	1127.21	98.82 T	743	1070.46	100.03 W	424	4	86.51	486.51	101.22	BKF
760	1134.97	99.01 T	745	1074.84	100.18 W	431	4	80.78	480.78	102.34	BKF
762	1150.45	98.97 T	747	1084.74	100.16 W	432	4	65.94	465.94	102.35	BKF
764	1173.38	98.43 P	749	1092.39	100.18 W	433	4	49.47	449.47	101.72	BKF
766	1185.42	98.24 M	751	1098.27	100.19 W	434	4	26.17	426.17	101.67	BKF
768	1199.52	98.16 T	753	1106.73	100.13 W	436	4	10.54	410.54	102.07	BKF
770	1211.05	98.41 T	755	1109.66	100.13 W	444	15	32.42	1532.42	102.79	BKF
772	1223.27		757			447		55.21		102.79	BKF
		97.99 T		1116.94	100.11 W		15		1555.21		
774	1231.51	98.06 T	759	1127.71	100.14 W	450	15	75.76	1575.76	103.19	BKF
776	1246.68	98.14 T	761	1134.35	100.06 W	458	16	46.49	1646.49	102.55	BKF
778	1258.13	98.19 T	763	1149.78	100.13 W	467	16	71.3	1671.3	102.11	BKF
780	1269.5	97.87 M	765	1173.08	100.07 W	477	17	38.41	1738.41	101.75	BKF
782	1287.58	98.24 T	767	1185.58	100.15 W	483	17	53.95	1753.95	101.88	BKF
784	1299.32	97.71 M	769	1199.87	100.02 W	490	17	93.95	1793.95	102.59	BKF
786	1314.17	97.66 T	771	1211	100.1 W	499	18	37.49	1837.49	102.25	BKF
788	1316.28	97.63 T	773	1220.99	100.05 W	505	18	61.01	1861.01	102.72	BKF
790	1324.1	97.85 T	775	1231.13	100.1 W	510	18	93.04	1893.04	102.06	BKF
792	1336.04	97.84 T	777	1246.56	100.05 W	521	19	28.01	1928.01	102.45	BKF
794		97.23 T	779				19			102.43	BKF
	1343.39			1258.29	100.08 W	526		2.98	1902.98		
798	1365.49	97.31 T	781	1269.91	100.09 W	527	18	73.45	1873.45	101.63	BKF
800	1373.02	97.91 T	783	1287.65	99.78 W	528	18	12.7	1812.7	101.75	BKF
803	1392.95	98.62 T	785	1298.67	99.83 W	529	17	89.44	1789.44	101.46	BKF
802	1393.51	98.59 T	888	1306.51	99.71 W	530	17	43.15	1743.15	101.84	BKF
805	1395.88	98.8 LV	882	1306.84	99.6 W	531	16	92.07	1692.07	101.7	BKF
9474	1418.88	96.76 T	787	1314.5	99.83 W	533	16	58.83	1658.83	102.05	BKF
9475	1430.31	96.54 T	789	1316.5	99.86 W	534	16	32.64	1632.64	102.29	BKF
9478	1443.85	97.16 T	791	1324.7	99.77 W	535	15	99.16	1599.16	102.46	BKF
9479	1454.63	97.63 T	793	1334.86	99.86 W	536	15	67.6	1567.6	102.27	BKF
9481	1466.8	97.54 T	795	1342.37	99.6 W	537	15	37.99	1537.99	102.75	BKF
9483	1490.52	98.17 T	797	1352.75	99.92 W	551	20	36.88	2036.88	101.75	BKF
9485	1510.89	98.4 U	799	1365.99	99.71 W	554	20	70.29	2070.29	101.7	BKF
9487	1534.08	97.2 M	801	1373.72	99.84 W	566	20	72.84	2072.84	101.41	BKF
9489	1553.98	96.32 T	804	1393.61	99.82 W	569	20	85.37	2085.37	101.47	BKF
9492	1575.18	97.66 T	806	1396.32	99.8 W	572	21	10.98	2110.98	100.61	BKF
9494	1584.75	97.61 U	9480	1455.72	99.64 W	575	21	32.63	2132.63	100.97	BKF
9496	1596.99	97.79 T	9482	1467.84	99.71 W	578	21	53.71	2153.71	100.71	BKF
9498	1618.53	98.13 T	9484	1490.47	99.61 W	579	22	8.91	2208.91	101.64	BKF
9500	1638.3	97.92 T	9486	1511.52	99.65 W	585	22	10.06	2210.06	101.47	BKF
9504	1640.49	96.77 M	9488	1533.89	99.64 W	586	21	56.43	2156.43	101.1	BKF
9502	1661.75	97.11 T	9490	1552.51	99.58 W	587	21	0.36	2100.36	101.41	BKF
9506	1672.2	97.95 R	9493	1575.69	99.53 W	588	20	79.96	2079.96	100.66	BKF
9512	1694.34	96.86 T	9495	1575.69	99.59 W	589	20	39.77	2079.96	100.86	BKF
9514	1706.42	97.17 T	9497	1597.44	99.67 W	590	20	19.4	2019.4	102.17	BKF
9516	1716.6	96.23 T	9499	1619.31	99.62 W	591	19	87.11	1987.11	101.12	BKF
9518	1720.24	96.02 M	9501	1638.83	99.5 W	592	19	70.63	1970.63	101.78	BKF
9520	1742.71	97.85 T	9505	1642.45	99.33 W				0		
9522	1753	97.31 T	9503	1659.55	98.94 W				0		
9524	1768.62	97.38 T	9507	1672.44	99.5 W				0		
9526	1778.83	96.99 T	9509	1687.19	99.32 W				0		
9528	1787.22	96.21 M	9511	1689.99	99.22 W				0		
9530	1799.18	97.47 T	9513	1693.18	99.01 W				0		
9532	1809.06	96.62 P	9515	1707.18	99 W				0		
9579	1816.13	96.25 P	9517	1716.64	99.07 W				0		
9582		96.25 P 96.26 M	9517		98.86 W				0		
	1821.41			1718.64							
9585	1830.35	97.05 R	9521	1743.2	99.25 W				0		
9588	1851.49	96.94 T	9523	1753.83	99.25 W				0		
9364	1870.89	97.26 T	9525	1768.21	99.13 W				0		
9367	1885.82	97.59 V	9527	1777.86	99.23 W				0		
	1890.23	98.02 T	9529	1786.75	99.16 W				0		
9370			9531	1799.46	00 47 14/				0		
9370 9373	1894.89	97.11 T	3331		99.17 W						
		97.11 T 96.35 T	9533	1808.39	99.17 W 99.16 W				0		
9373	1894.89										

9380	1923.06	96.28 P	9586	1830.65	99.08 W
9381	1935.08	95.95 M	9589	1852.06	99.05 W
9385	1942.38	96.5 R	9365	1871.24	99.08 W
9379	1942.52	97.57 L	9368	1884.12	98.9 W
9389	1957.6	94.9 T	9371	1890.79	98.6 W
9392	1970.36	94.39 M	9375	1899.07	98.37 W
9395	1983.44	95.72 T	9378	1916.96	98.57 W
9398	1996.5	96.72 RT	9382	1935.21	98.51 W
9401	2022.78	96.87 T	9386	1942.22	98.43 W
9404	2027.98	95.91 T	9390	1957.89	98.26 W
9407	2044.74	96.42 T	9393	1970.46	98.13 W
9410	2069.41	97.49 T	9396	1983.35	98.24 W
9413	2086.16	97.34 T	9399	1996.65	98.37 W
9417	2108.18	97.39 T	9402	2023.32	98.36 W
9420	2133.7	97.39 T	9405	2028.8	98.26 W
9423	2155.67	96.82 T	9408	2044.3	98.35 W
9426	2180.64	96.76 T	9411	2069.92	98.29 W
			9414	2087.26	98.29 W
			9418	2108.49	98.49 W
			9421	2135.14	98.44 W
			9424	2156.48	98.4 W
			9427	2180.99	98.4 W

Point	Station	Elevation	Description	Point	Station	Elevation	Description	Point	Station	Elevation	Description
318	0+00.48	98.26	Т	319	0+00.00	99.51	W	14	5+60.48	103.38	RB
321	0+19.69	98.91	V	322	0+17.80	99.52	W	18	6+11.48	103.32	RB
324	0+25.92	96.02	Т	325	0+25.53	98.8	W	21	6+58.11	103.88	RB
327	0+39.15	95.11	TP	328	0+39.52	98.83	W	22	6+79.49	103.43	RB
330	0+49.43	97.62		331	0+48.74	98.78	W	23	6+94.24	103.47	RB
333	0+63.30	97.38	TP	334	0+62.99	98.83	W	24	7+10.60	103.55	RB
335	0+75.60	97.04	TM	336	0+75.74	98.72	W	26	7+68.24	103.24	RB
344	1+10.22	98.34	Т	347	1+16.58	98.81	W	27	7+96.56	103.25	RB
346	1+16.67	97.76		349	1+27.00	98.79	W	28	8+42.44	103.38	RB
348	1+27.40	98.46	T	338	1+35.74	98.76	W	29	8+84.09	102.95	RB
337	1+35.73	97.88	TR	351	1+44.75	98.75	W	30	9+09.15	103.26	RB
350	1+45.34	97.43	TU	353	1+63.05	98.66	W	31	9+26.07	103.22	RB
352	1+63.90 1+73.91	97.76 97.12	T TP	355 357	1+73.31 1+90.82	98.67	W	32 33	9+54.30 9+66.86	103.13 102.88	RB RB
354 356	1+73.91	96.19	TM	360	2+00.25	98.61 98.67	W W	56	6+38.15	102.65	LB
359	2+00.43	96.83		363	2+00.25	98.66	W	56 57	6+56.75	102.83	LB
362	2+14.34	97.37	T	366	2+26.78	98.66	W	58	6+67.12	102.82	LB
365	2+26.89	97.17		368	2+45.10	98.66	W	61	6+83.76	103.00	LB
367	2+45.14	96.61	TM	371	2+58.65	98.65	W	64	7+12.11	103.04	LB
370	2+58.71	96.49	T	374	2+72.60	98.65	W	67	7+27.84	103.03	LB
373	2+72.46	95.85	Ť	377	2+84.23	98.64	W	148	12+61.60	102.3	LB
376	2+84.28	96.89	Ť	380	3+00.35	98.62	W	149	12+29.48	102.78	LB
379	2+99.88	97.69	Ť	383	3+17.10	98.58	W	150	12+12.91	103.3	LB
382	3+16.10	97.13	TP	386	3+33.33	98.56	W	152	11+46.39	102.21	LB
385	3+32.58	96.05	TM	388	3+42.14	98.58	W	153	10+82.85	103.2	LB
387	3+41.00	96.98	Т	391	3+49.78	98.55	W	154	10+71.39	102.51	LB
390	3+49.59	97.66	TR	395	3+68.24	98.61	W	156	10+33.61	102.03	LB
394	3+67.81	97.56	Т	398	3+79.26	98.62	W	157	10+15.65	102.94	LB
397	3+78.49	96.9	T	400	3+88.96	98.6	W	158	9+93.29	102.84	LB
399	3+88.24	97.33	Т	402	3+96.94	98.57	W	162	9+17.79	102.44	LB
401	3+96.80	97.61	TR	404	4+08.54	98.6	W	163	8+91.61	102.56	LB
403	4+07.67	97.14	Т	407	4+29.86	98.53	W	165	8+62.93	102.94	LB
406	4+29.24	97.51	T	411	4+74.92	98.59	W	166	8+48.61	103.01	LB
408	4+62.85	97.33	T	413	4+80.03	98.5	W	167	8+24.56	103.56	LB
410	4+74.91	95.94	TM	415	4+93.22	98.49	W	168	8+02.62	103.69	LB
412	4+79.80	96.69	T T	8	5+15.09	99.98	W	169	7+84.64	103.41	LB
414	4+92.84	96.14	T T	19	6+31.85	99.99	W	170	7+60.94	102.54	LB
425 6	5+01.89 5+06.26	96.69 99.16		17 60	6+40.18 6+63.23	99.98 100	W W	171 172	7+46.15 7+22.94	103 103.04	LB LB
7	5+15.53	98.17	TM	63	6+76.60	99.96	W	172	12+80.57	103.04	RB
10	5+48.02	99.49	TR	68	7+07.47	99.95	W	178	12+38.38	101.78	RB
12	5+97.83	99.36	TP	71	7+25.26	99.96	W	179	12+30.38	101.78	RB
13	6+32.28	98.6		73	7+35.03	100.01	W	180	11+98.73	101.82	RB
15	6+40.86	96.41	TM	76	7+44.55	99.99	W	181	11+81.09	102.41	RB
59	6+64.61	99.04	Т	77	7+74.20	99.99	W	182	11+64.13	102.84	RB
62	6+77.43	98.86	TP	79	8+20.68	99.98	W	183	11+48.21	102.16	RB
65	6+91.71	98.15	TM	81	8+50.12	99.96	W	184	11+22.28	102.16	RB
69	7+08.73	98.98	T	85	8+78.97	100	W	185	10+97.69	102.7	RB
70	7+25.66	98.03	TM	87	8+88.43	99.94	W	186	10+70.22	102.6	RB
72	7+35.85	98.37	T	89	8+94.30	99.8	W	187	10+50.96	103.29	RB
74	7+45.02	98.97		91	8+99.82	99.77	W	188	10+39.33	103.35	RB
75	7+74.79	98.69		93	9+08.58	99.8	W	189	10+27.40	102.82	RB
78	8+20.82	98.19		97	9+29.37	99.75	W	190	10+03.89	102.76	RB
80	8+50.18	98.06		95	9+35.78	99.7	W	191	9+80.61	102.71	RB
82	8+57.61	98.15		99	9+48.02	99.73	W	192	9+64.45	103.18	RB
83	8+70.01	98.16		101	9+72.66	99.72	W	199	14+00.79	102.64	LB
84	8+79.34	98.96		103	9+89.92	99.71	W	201	14+18.17	102.76	LB
88	8+93.95	98.45		105	9+98.93	99.71	W	209	15+28.54	102.18	LB
90 92	8+99.90 9+08.64	97.6 99.03		107 109	10+08.25 10+24.10	99.69 99.74	W W	210 211	15+56.77 15+75.08	102.95 103.03	LB LB
96	9+29.74	98.81	TU	111	10+24.10	99.74	W	213	16+12.82	102.99	LB
94	9+34.68	97.57		113	10+49.61	99.7	W	214	16+37.77	102.93	LB
98	9+48.51	97.38		115	10+49.01	99.7		215	16+64.44	102.91	LB
100	9+72.61	98.52		117	10+76.30	99.72	W	216	16+91.66	102.01	LB
102	9+90.52	98.34		119	10+80.87	99.7	W	217	17+09.66	102.26	LB
102	9+98.74	98.7		121	10+90.77	99.75	W	218	17+34.15	101.82	LB
104	10+08.57	98.94		123	11+00.23	99.75	W	219	17+69.06	101.92	LB
108	10+24.40	97.52		125	11+04.14	99.73	W	220	17+93.10	102.58	LB
110	10+40.16	98.01	T	127	11+32.85	99.66	W	279	13+16.81	103.21	RB
112	10+49.34	97.67		129	11+52.08	99.75	W	282	13+40.82	102.94	RB
114	10+68.14	98.32		131	11+61.08	99.69	W	285	13+64.28	102.46	RB

116	10+75.57	98.02	TP	1	33	11+85.44	99.62	W	286	13+98.86	101.98	RB
118	10+81.76	97.77	TM		35	12+06.63	99.73	W	289	14+00.91	101.96	RB
120	10+89.62	98.31	Т		37	12+15.52	99.69	W	296	14+34.70	102.35	RB
122	10+99.12	97.49	Т	1	39	12+33.46	99.67	W	304	14+91.13	102.99	RB
124	11+04.22	98.04	TG	1	41	12+48.37	99.7	W	314	0+18.96	101.86	RB
126	11+32.52	98.5	TR	1	43	12+65.39	99.66	W	315	0+47.08	102.62	RB
128	11+51.72	98.52	Т	1	45	12+80.97	99.71	W	316	0+84.22	102.05	RB
130	11+60.67	98.67	Т	2	276	13+02.96	99.82	W	317	1+01.22	102.53	LB
132	11+84.91	98.21	Т	2	278	13+17.72	99.82	W	320	1+55.80	102.72	RB
134	12+06.30	98.4	TP	2	281	13+31.34	99.79	W	323	1+81.24	102.05	RB
136	12+16.34	98.19	TM	2	284	13+68.95	99.81	W	326	0+32.71	103.28	LB
138	12+32.90	98.14	TR	2	288	13+90.39	99.8	W	329	0+73.49	102.48	LB
140	12+47.96	97.69	Т	2	291	14+13.33	99.78	W	332	1+44.61	101.8	LB
142	12+65.00	98.47	TR	2	293	14+25.79	99.78	W	339	1+52.07	101.41	LB
144	12+80.65	98.09	TP	2	295	14+32.53	99.78	W	345	2+00.84	102.15	LB
275	13+03.02	97.69	Т	2	298	14+58.80	99.76	W	358	2+23.69	102.02	LB
277	13+17.95	97.9	Т	3	301	14+77.57	99.64	W	361	2+52.18	101.96	LB
280	13+31.78	98.19	Т	3	306	14+90.23	99.77	W	364	2+82.57	101.99	LB
283	13+70.48	97.84	Т	3	808	15+09.61	99.8	W	369	2+24.01	101.9	RB
287	13+90.50	97.49	Т	4	139	15+19.19	99.7	W	372	2+39.01	102.38	RB
290	14+14.29	97.93	Т	4	143	15+34.22	99.67	W	375	2+52.14	102.4	RB
292	14+25.50	98.47	Т	4	146	15+59.69	99.7	W	378	2+76.86	102.53	RB
294	14+33.14	98.84	V	4	149	15+71.52	99.7	W	381	3+02.95	102.47	RB
297	14+59.30	96.95	TM	4	152	15+81.55	99.68	W	384	3+23.33	101.73	RB
300	14+76.95	98.33	Т	4	155	15+94.49	99.62	W	389	3+34.32	101.57	RB
302	14+79.80	97.2	Т	4	157	16+06.95	99.71	W	392	3+64.02	102.42	RB
305	14+89.96	96.97	TM		160	16+16.71	99.7	W	393	3+75.10	102.24	RB
307	15+09.97	97.79	Т	4	162	16+34.73	99.7	W	396	3+89.11	102.06	RB
438	15+19.27	98.45	Т	4	166	16+59.66	99.68	W	405	2+83.20	101.67	LB
442	15+34.36	98.4	Т	4	172	16+92.72	99.64	W	416	3+05.56	101.36	LB
445	15+60.34	98.01	Т	4	176	17+08.47	99.62	W	417	3+17.93	101.95	LB
448	15+71.87	97.65	TP	4	180	17+32.49	99.57	W	418	3+36.16	101.69	LB
451	15+82.70	96.76	TM	4	182	17+36.60	99.38	W	419	3+59.05	101.55	LB
454	15+95.31	97.08	Т	4	184	17+36.73	99.38	W	420	3+82.52	101.48	LB
456	16+06.54	96.82	TM	4	187	17+44.11	99.28	W	421	4+06.30	101.6	LB
459	16+16.91	97.36	Т	4	189	17+52.80	99.36	W	422	4+50.68	101.71	LB
461	16+34.87	98.22	Т	4	192	17+60.32	99.29	W	423	4+65.89	101.47	LB
463	16+48.19	98.05	Т	4	194	17+75.89	99.33	W	424	4+86.51	101.22	LB
465	16+59.64	97.9	Т	4	196	18+04.70	99.31	W	431	4+80.78	102.34	RB
468	16+77.72	97.67	Т	4	198	18+16.18	99.29	W	432	4+65.94	102.35	RB
471	16+93.08	98.23	Т	5	502	18+34.38	99.33	W	433	4+49.47	101.72	RB
473	17+00.68	97.11	Т	5	504	18+45.86	99.37	W	434	4+26.17	101.67	RB
475	17+08.62	97.71	Т	5	507	18+52.98	99.31	W	436	4+10.54	102.07	RB
478	17+31.30	98.82	VL	5	509	18+64.09	99.36	W	444	15+32.42	102.79	LB
479	17+32.34	98.76	VL2	5	512	18+77.22	99.28	W	447	15+55.21	102.94	LB
481	17+36.42	97.73	Т	5	514	18+84.91	99.31	W	450	15+75.76	103.19	LB
485	17+36.77	97.7	Т	5	18	19+15.95	99.33	W	458	16+46.49	102.55	LB
486	17+44.17	96.81	Т	5	20	19+28.01	99.05	W	467	16+71.30	102.11	LB
488	17+53.42	98.09	Т	5	523	19+37.84	98.74	W	477	17+38.41	101.75	LB
491	17+60.19	96.93	Т	5	25	19+52.49	98.79	W	483	17+53.95	101.88	LB
493	17+76.46	97.44	Т	5	542	19+76.97	98.71	W	490	17+93.95	102.59	LB
495	18+05.19	97.96	Т	5	544	19+99.47	98.78	W	499	18+37.49	102.25	LB
497	18+15.95	97.76	TP	5	547	20+13.76	98.84	W	505	18+61.01	102.72	LB
501	18+34.46	96.76	TM	5	550	20+22.37	98.74	W	510	18+93.04	102.06	LB
503	18+45.55	97.71	Т	5	553	20+29.50	98.76	W	521	19+28.01	102.45	RB
506	18+52.71	96.79	Т	5	556	20+47.87	98.75	W	526	19+02.98	101.87	RB
508	18+64.50	96.29	Т	5	559	20+64.52	98.76	W	527	18+73.45	101.63	RB
511	18+76.66	97.36	Т	5	62	20+99.01	98.72	W	528	18+12.70	101.75	RB
513	18+84.70	97.79	Т	5	65	21+48.44	98.8	W	529	17+89.44	101.46	RB
515	19+00.14	97.11	Т	5	68	21+66.46	98.68	W	530	17+43.15	101.84	RB
517	19+14.77	97.62	Т	5	71	21+74.69	98.84	W	531	16+92.07	101.7	RB
519	19+28.59	98.13	V	5	74	21+95.18	98.72	W	533	16+58.83	102.05	RB
522	19+38.84	97.59	Т	5	577	22+03.50	98.98	W	534	16+32.64	102.29	RB
524	19+52.21	97.4	Т	5	81	22+22.20	98.98	W	535	15+99.16	102.46	RB
539	19+61.23	96.8	Т						536	15+67.60	102.27	RB
541	19+76.39	96.34	TP						537	15+37.99	102.75	RB
543	19+99.05	96.78	Т						551	20+36.88	101.75	LB
546	20+12.09	96.15	Т						554	20+70.29	101.7	LB
549	20+22.12	97.49	T						566	20+72.84	101.41	LB
552	20+29.04	97.06	T						569	20+85.37	101.47	LB
555	20+46.97	96.49	Т						572	21+10.98	100.61	LB
557	20+63.17	97.13	Т						575	21+32.63	100.97	LB
558	20+63.71	97.14	T						578	21+53.71	100.71	LB
561	20+97.64	96.92	Т						579	22+08.91	101.64	LB

564	21+48.08	97.53	Т	585	22+10.06	101.47	
567	21+64.27	96.96	Т	586	21+56.43	101.1	
570	21+73.37	96.04	Т	587	21+00.36	101.41	
573	21+93.55	96.99	Т	588	20+79.96	100.66	
576	22+02.88	97.13	Т	589	20+39.77	101.34	
580	22+20.27	97.48	Т	590	20+19.40	102.17	
583	22+26.98	98.17	V	591	19+87.11	101.12	
582	22+27.08	98.2	V	592	19+70.63	101.78	

Quad 1

Tree Stratum Species	Height (cm)	Diameter (mm) F	Radius (mm)	Σ X-sec. (mm²)	Rel. x-sec (%)	<u>Density</u>	Rel. Density (%)	Rank (Importance)	<u>Average</u>
Quercus phellos	188	3 10	5	78.5	73.3	6	6.8	1	40.08045
·	75	5 12	6	113.1					
	260 300		17.5 16	962.1 804.2					
	175		9	254.5					
	40	12	6	113.1					
	Total		59.5	2325.6					
Pinus taeda	42		1.5	7.1	0.2	65	73.9	2	37.04638
	30 28		1	3.1 3.1					
	13		0.25	0.2					
	13	3 0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13		0.25	0.2					
	12	2 0.5	0.25	0.2					
	11 11		0.25 0.25	0.2 0.2					
	12		0.25	0.2					
	12		0.25	0.2					
	10 11		0.25 0.25	0.2 0.2					
	10		0.25	0.2					
	10		0.25	0.2					
	10 13		0.25 0.25	0.2 0.2					
	12	2 0.5	0.25	0.2					
	14		0.25	0.2					
	14 15		0.25 0.25	0.2 0.2					
	16	3 1	0.5	0.8					
	18		0.5	0.8					
	19 16		0.5 0.25	0.8 0.2					
	14	1 0.5	0.25	0.2					
	12		0.25	0.2					
	13		0.25 0.25	0.2 0.2					
	8	0.5	0.25	0.2					
	14 7		0.5 0.25	0.8 0.2					
	19		0.25	0.2					
	10) 1	0.5	0.8					
	1° 2°		0.25 0.75	0.2 1.8					
	18		0.75	0.2					
	15	5 0.5	0.25	0.2					
	18 10		0.25 0.25	0.2 0.2					
	14	1 0.5	0.25	0.2					
	14		0.25	0.2					
	16 18		0.5 0.5	0.8 0.8					
	12	2 0.5	0.25	0.2					
	13 11		0.25	0.2					
	10		0.25 0.5	0.2 0.8					
	17	7 1	0.5	0.8					
	17 15		0.5 0.25	0.8 0.2					
	15	5 0.5	0.25	0.2					
	15	5 0.5	0.25	0.2					
	17 18		0.5 0.5	0.8 0.8					
	11	1 0.5	0.25	0.2					
	10		0.25	0.2					
	20		0.25 0.75	0.2 1.8					
	22	2 1.5	0.75	1.8					
	20 20		0.75 1	1.8 3.1					
	11	0.5	0.25	0.2					
	Total		24.75	7.3					
Betul	a nigra 51	1 3	1.5	7.1	0.9	3	3.4	. 7	2.138013
Jotan	15	5 1	0.5	0.8		·		•	
	Total	5 3	2.5 4.5	19.6					
				27.5					
Liquidambar styr			1.5	7.1	0.7	7	8.0	5	4.348816
	15 19		0.5 1	0.8 3.1					
	13	, 2		5.1					

	19	2	1	3.1				
	19	2	1	3.1				
	19	2 2	1	3.1				
	19	2	1	3.1				
Total			7	23.6				
Liriodendron tulipifera	22	2 2	1	3.1	0.1	1	1.1	9 0.617721
Total		2	1	3.1				
Nyssa sp.	162	18	9	254.5	8.0	1	1.1	4 4.580853
Total			9	254.5				
Fraxinus sp.	210	20	10	314.2	10.1	2	2.3	3 6.201742
•	45	3	1.5	7.1				
Total			11.5	321.2				
Salix nigra	450	6	3	28.3	0.9	1	1.1	8 1.014439
Total				28.3				
Acer negundo	20	2	1	3.1	0.1	1	1.1	9 0.617065
Total				3.1				
Paulownia tomentosa	100	15	7.5	176.7	5.6	1	1.1	6 3.354529
Total	.00	.0	7.0	176.7	0.0	•		0.004020
Overall Total				3170.8	100.0	88.0	100.0	

 Total Trees per acre
 3520

 Planted trees per acre
 320

 Total Nat. Regen.Trees per acre
 3200

Shrub Stratum

<u>Species</u>	Cover (%)	Rel. cover (%)	<u>Density</u>	Rel. Density (%)	Rank (Importance)
Alnus serrulata	0.5	50.0	2	0.2	2
Cornus amomum	0.5	50	11	0.8	1
Total			13		

Herb Stratum

Species	Cover (%)	Rel. cover (%) Ra	ank (Importance)
Digitaria sp.	70	57.9	1
Lonicera japonica	40	33.1	2
Rubus sp.	2	1.7	5
Agrostis sp.	4	3.3	3
Microstegium vimineum	3	2.5	4
Artemisia sp.	2		

Total 121 98.3

VEGETATION 2003 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
VEGETATION 2005 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a

VEGETATION 2004 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
VEGETATION 2004 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a

Quad 2

Tree Stratum	Hoight (am)		Diameter (mm) Badius (mm)		T V ann (mm²)	Rel. x-sec (%)	Danaity	Bal Danaity (9/)	Pank (Importance)	Avoroso
<u>Species</u>	Height (cm)		Diameter (mm) Radius (mm)		Σ X-sec. (mm²)	Rei. X-Sec (%)	<u>Density</u>	Rel. Density (%)	Rank (Importance)	Average
Liquidambar styrac	iflı	34 27	3 3	1.5 1.5	7.1 7.1					
		25	3	1.5	7.1					
		25	3	1.5	7.1					
		25 37	3	1.5 2	7.1 12.6					
		20	4 2	1	3.1					
		20	2	1	3.1					
		21	2	1	3.1					
		21 20	2 2	1 1	3.1 3.1					
		16	2	1	3.1					
		25	3	1.5	7.1					
		29	3	1.5	7.1					
		22 19	2 2	1 1	3.1 3.1					
		16	1	0.5	0.8					
		15	1	0.5	0.8					
		17 17	1 1	0.5 0.5	0.8 0.8					
		17	1	0.5	0.8					
		13	1	0.5	0.8					
		12		0.25	0.2					
		11 12		0.25 0.25	0.2 0.2					
		10		0.25	0.2					
		29	3	1.5	7.1					
		29 29	3 3	1.5 1.5	7.1 7.1					
		30	3	1.5	7.1					
		25	2	1	3.1					
		25	2	1	3.1					
		25 25	2 2	1 1	3.1 3.1					
		25	2	1	3.1					
		25	2	1	3.1					
		25 22	2 1	1 0.5	3.1 0.8					
		24	2	0.5	3.1					
		24	2	1	3.1					
		24	2	1	3.1					
		15 15	1 1	0.5 0.5	0.8 0.8					
		28	3	1.5	7.1					
		33	3	1.5	7.1					
		25	2	1	3.1					
		30 34	3 3	1.5 1.5	7.1 7.1					
		10		0.25	0.2					
		36	7	3.5	38.5				_	
Tota	al				224.8	12.3	50	42.4	. 2	27.31271
Ash spp.	1	70	35	17.5	962.1					
**		44	5	2.5	19.6					
		00 15	16 2	8 1	201.1 3.1					
		26	3	1.5	7.1					
		30	3	1.5	7.1					
Tota	al				1200.1	65.4	6	5.1	1	35.24435
Pinus sp.		33	2	1	3.1					
•		25	1	0.5	0.8					
		25 25	1 1	0.5 0.5	0.8 0.8					
		25 25	1	0.5	0.8					
		25	1	0.5	0.8					
		25	1	0.5	0.8					
		40 42	3 3	1.5 1.5	7.1 7.1					
		40	3	1.5	7.1					
		42	3	1.5	7.1					
		41	3	1.5	7.1					
		15 40	1 3	0.5 1.5	31.4 7.1					
Tota	al	. 5	Ü		81.7	4.5	59.0	50.0	3	27.22579
Liriodondese telle "		20	2	1 -	7.4					
Liriodendron tulipife	ere .	26 30	3 3	1.5 1.5	7.1 7.1					
Tota			ž		14.1	0.8	2	1.7	5	1.23269

Platanus occidentalis	310	20	10	314.2				
Total				314.2	17.1	1	0.8	4 8.984456
Overall Total				1834.9	100.0	118.0	100.0	100
Total Trees per acre						4720		
Planted trees per acre						120		
Total Nat. Regen.Trees per	r acre					4600		

Shrub Stratum Species	Cover (%)	Rel. cover (%)	<u>Density</u>	Rel. Density (%)	Rank (Importance)
Cornus amomum	35	500.0	21	75.0	1
Rosa multiflora	1.5	21.4	5	17.9	3
Myrica cerifera	0.5	7.1	2	7.1	4
Salix nigra	20	285.7	19	67.9	2
·	57	814.3	47	167.9	
Herb Stratum					
Species	Cover (%)	Rel. cover (%)	Rank (Importance)		
Impatiens capensis	0.5	1.2	4		
Polygonum sp.	15	35.3	1		
Carex spp.	10	23.5	2		
Lonicera japonica	2	4.7	3		
Juncus sp.	15	35.3	1		
Total	42.5	100.0			

VEGETATION 2003 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3	- Hominy	Quad 4 - Hominy	
VEGETATION 2003 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a

VEGETATION 2004 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3	- Hominy	Quad 4 - Hominy	
VEGETATION 2004 Monitoring	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a

Quad 3

Tree	Stratum
------	---------

Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm²)	Rel. x-sec (%)	<u>Density</u>	Rel. Density (%)	Rank (Importance)	<u>Average</u>
Quercus sp.	270	25	12.5	490.9	97.4	3	42.9	1	70.11196
	235	28	14	615.8					
	280	12	6	113.1					
Total				1219.7					
Liquidambar styracifle	40	3	1.5	7.1	2.6	4	57.1	2	29.88804
	25	2	1	3.1					
	27	2	1	3.1					
	62	. 5	2.5	19.6					
Total				33.0					
Overall Total				1252.7	100.0	7.0	100.0		100
Total Trees per acre						280			
Planted trees per acre	е					120			
Total Nat. Regen.Tre	es per acre					160			

Shrub Stratum

Total

153

Species .	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)
					_
Sambucus canadens	40	71.4	19	50.0	1
Cornus amomum	15	26.8	10	26.3	2
Salix nigra	10	17.9	2	5.3	3
	65	116.1	31	81.6	
Herb Stratum					
Species .	Cover (%)	Rel. cover (%)	Rank (Importance)		
Microstegium vimineu	3	2.0	3		
Polygonum sp.	50	32.7	2		
Diodia virginiana	100	65.4	1		

100.0

VEGETATION 2003 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a

VEGETATION 2004 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a

Quad 1

Second Parison Paris	Tree Stratum									
Total		Height (cm)	Diameter (mm) Ra	idius (mm)	Σ X-sec. (mm²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
Thus in the content of the content	Quercus phellos									
Prise time for										
	Total	13	2			61.3	3	7.9	5 2	34.39427
	Pinus toodo	22		0.5	0.0					
	rinus laeua									
Part										
1				0.5	0.8					
1										
1										
1										
1										
1		24	. 1	0.5	0.8					
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
1										
Platanus occidentalis 130 17 15 15 15 15 15 15 15										
Platanus occidentalis				0.5	0.8					
Total Tota										
Total Tota										
Platanus occidentalis 130										
Total	Total		•			0.1	32	80.0	0 1	40.05507
Total	Distance assistantalia	420	47	0.5	227.0					
Total		130				15.9	1	2.5	5 4	9.207048
Total										
Total 18 2	Liquidambar styraciflua									
Diospyros virginiana 157 20										
Total Total Total Trees per acre Tot	Total					0.7	3	7.9	5 5	4.080396
Total Total Total Trees per acre Tot	Diospyros virginiana	157	. 20	10	31/1.2					
Total Trees per acre 1600 100.		157	20				1	2.5	5 3	12.26322
Planted tree's per acre 120 1480										
Planted tree's per acre 120 1480	T-1-1 T						4000			
Shrub Stratum Species Cover (%) Rel. cover (%) Density Rel. Density (%) Rank (Importance)										
Shrub Stratum Species Cover (%) Rel. cover (%) Density Rel. Density (%) Rank (Importance)		oer acre								
Species Cover (%) Rel. cover (%) Density Rel. Density (%) Rank (Importance) Cornus amonum 20 53.3 41 52.6 1 Salix nigra 15 40.0 18 23.1 2 Sambucus canadensis 2 5.3 8 10.3 4 Aronia arbutifolia 0.5 1.3 11 14.1 3 total 37.5 100 78 100 Herb Stratum Species Cover (%) Rel. cover (%) Rank (Importance) Poligitaria sp. 70 61.9 1 Rubus sp. 2 1.8 3 3 4 Loricera japonica 40 35.4 2 2 Sorghastrum nutans 1 0.9 3 4 4										
Cornus amomum 20 53.3 41 52.6 1		0 (0/)	D-1 700	D"	D-1 D " ""	David days 1				
Salix nigra 15 40.0 18 23.1 2 Sambucus canadensis 2 5.3 8 10.3 4 Aronia arbutifolia 0.5 1.3 11 14.1 3 total 37.5 100 78 100 Herb Stratum Species Cover (%) Fall Cover (%) 61.9 1 82 1 83 83 84 83 84 85 86 87 87 86 87 87 88 88 88 88	<u>Species</u>	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
Salix nigra 15 40.0 18 23.1 2 Sambucus canadensis 2 5.3 8 10.3 4 Aronia arbutifolia 0.5 1.3 11 14.1 3 total 37.5 100 78 100 Herb Stratum Species Over (%) Fall Cover (%) 61.9 1 81 83 83 84 83 84 85 86 87 87 88 87 88 88 88 88 88	Cornus amomum									
Aronia arbutifolia total 0.5 1.3 11 14.1 3 Herb Stratum Species Cover (%) Rel. cover (%) Rank (Importance) Rel. stratum Digitaria sp. 70 61.9 1 Rubus sp. 2 1.8 3 Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3	Salix nigra	15	40.0	18	23.1					
total 37.5 100 78 100 Herb Stratum Species Cover (%) Rel. cover (%) Rank (Importance) Part (Importanc										
Species Cover (%) Rel. cover (%) Rank (Importance) Digitaria sp. 70 61.9 1 Rubus sp. 2 1.8 3 Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3						3				
Species Cover (%) Rel. cover (%) Rank (Importance) Digitaria sp. 70 61.9 1 Rubus sp. 2 1.8 3 Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3	Llorb Ctration									
Digitaria sp. 70 61.9 1 Rubus sp. 2 1.8 3 Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3		Cover (%)	Rel cover (%) Par	nk (Importance)						
Rubus sp. 2 1.8 3 Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3										
Lonicera japonica 40 35.4 2 Sorghastrum nutans 1 0.9 3	Rubus sp.	2	1.8	3						
	Lonicera japonica									
10tal 115 100.0				3						
	Iotai	113	100.0							

VEGETATION 2003 Monitoring	Quad 1	- Hominy	Quad 2	- Hominy	Quad 3	- Hominy	Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a

VEGETATION 2004 Monitoring	Quad 1 - Hominy		Quad 2 - Hominy		Quad 3 - Hominy		Quad 4 - Hominy	
	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
Tree Stratum (stems/acre)	3520	320	4720	120	280	20	1600	120
Shrub Stratum (% cover)	1	n/a	57	n/a	65	n/a	38	n/a
Herb Stratum (%cover)	121	n/a	43	n/a	153	n/a	113	n/a